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1. ABSTRACT 
 

The Tiny Encryption Algorithm (TEA) was designed by Wheeler and Needham to be indeed “tiny” (small 
and simple), yet fast and cryptographically strong.  In my research and experiments, I sought to gain first-
hand experience to assess its relative simplicity, performance, and effectiveness.  This paper reports my 
findings, affirms the inventors’ claims, identifies problems with incorrect implementations and 
cryptanalysis, and recommends some solutions. 
 

2. INTRODUCTION 
 

The Tiny Encryption Algorithm (TEA) is a symmetric (private) key encryption algorithm created by 
David Wheeler and Roger Needham of Cambridge University and published in 1994. It was designed for 
simplicity and performance, while seeking an encryption strength on par with more complicated and 
resource-intensive algorithms such as DES (Data Encryption Standard).  Wheeler and Needham 
summarize this as follows: “it is hoped that it can easily be translated into most languages in a compatible 
way… it uses little set up time and does… enough rounds to make it secure… it can replace DES in 
software, and is short enough to write into almost any program on any computer.” [6]  
 
From academic research, one can learn of TEA’s relative merits.  My work sought to go further and gain 
a first-hand understanding of TEA’s simplicity (ease of implementation), performance, and effectiveness 
(cryptographic strength).  Through experiments, I sought to answer the following questions: 
 

• Simplicity: Is TEA easy to implement in a variety of languages, including both traditional third-
generation languages and newer dynamic scripting languages? 

• Performance: Is TEA’s design efficient?  How does its runtime speed compare with other similar 
block encryption algorithms? 

• Strength: Is TEA a cryptographically strong algorithm?  Are certain published TEA 
“weaknesses” significant? 

 
Gaining the experience to answer these questions required writing code, running tests and measurements, 
and doing some very basic cryptanalysis.  The sections below describe this work, along with my results 
and conclusions. 
 

3. DISCUSSION 
 

With published goals, design, and implementation of the TEA algorithm in mind, I wrote code to literally 
put its simplicity, performance, and effectiveness to the test.  I implemented both the original TEA and 
modified TEA (XTEA) algorithms; see below for further information on XTEA. 
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3.1 Simplicity 
 
TEA’s simplicity is easily demonstrated: the encryption and decryption algorithms are represented in only 
seven lines of C code each; see Figure 1 below for the original C encryption function, as published by the 
authors (the decryption function is given in Figure 2 of the Appendix).  The algorithm requires very little 
memory and, unlike other block ciphers of similar strength, does not require tables for P-boxes or S-boxes 
(permutation or substitution lookups).  Instead, it uses multiple passes, opting for “a large number of 
iterations rather than a complicated program.”[6]  The authors recommend 32 passes (64 rounds), but note 
that just six cycles will provide excellent diffusion and suggest that 16 sixteen passes may be used where 
performance is critical. 
 

 
Figure 1 - TEA Encryption Function 

TEA has been implemented in many languages, including C, C++, C#, Forth, Java, JavaScript,   
Macromedia Flash, Perl, PHP, Python, Ruby, SQL Server, Tcl, and a variety of assembly languages.  It 
has been deployed on many modern server and personal computer platforms, and in embedded systems 
and small devices, such as Palm Pilots, cell phones, and Microsoft’s Xbox. 
 
To assess the simplicity of the algorithm, I wrote my own implementations of TEA (and XTEA) in C, 
Java, Smalltalk, and Ruby.  The choice of these languages was deliberate: to claim that the algorithm is 
simple and easy to implement, we should attempt it in very different programming languages.  Ease of 
implementation in one language does not always equate to ease in a very different language.   
 
I chose C as the reference implementation, since that is what the authors published and could be used for 
verification.  I chose Java for its popularity and for its access to other industrial strength 
encryption/decryption algorithms (for performance comparison).  I chose Smalltalk and Ruby to assess 
the relative ease of implementation and performance in dynamic interpreted languages that lack built-in 
bitwise operators.  I wrote accompanying test drivers in each implementation language to verify 
correctness and measure performance. 
 
I found implementing and measuring TEA to be straightforward, particularly in C and Java.  The C 
implementation was quick: I simply pasted in the published algorithm and added test drivers around it.  
Java was almost as easy; I was able to use the core of the algorithm directly, with a minor edit: I changed 
the C right shift operators (>>) to the Java unsigned right shift operators (>>>), to avoid undesired sign 
extension.   
 
In all implementations, I had to write code to move byte data to and from 32-bit words.  This varied more 
than the TEA algorithm itself across the different languages.  I am curious as to the effect of different byte 

void code(long* v, long* k)  {               

 unsigned long y=v[0],z=v[1], sum=0, /* set up */ 

    delta=0x9e3779b9, /* a key schedule constant */ 

   n=32 ; 

 

 while (n-->0) {                       /* basic cycle start */ 

  sum += delta ; 

  y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ; 

      z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;    

        }      /* end cycle */ 

 v[0]=y ; v[1]=z ; } 
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orders (little endian vs. big endian) on the algorithm’s word-wise processing, but I did all my work under 
an Intel (little endian) architecture.  All performance and strength measurements were done with eight-
byte plaintexts, to avoid the effects of padding and block chaining. 
 
The Smalltalk implementation required a few iterations to get right.  The Smalltalk language does not 
have built-in bitwise operations (primitives), rather bitXor: and bitShift: messages sent to Integers.  
Further, Smalltalk provides large numbers that automatically extend (“grow”), so it was necessary to 
“mask off” the high order bytes of intermediate results. Other minor language differences affected the 
translation; for example, Smalltalk array indexes are 1-based vs. C’s 0-based offsets. Yet I deliberately 
worked to make the Smalltalk implementation “look” like the C implementation (and a little less object-
oriented), so that it was easier to compare to the published C reference implementation.   
 
I did the Ruby implementation last and found it easy to code, for three reasons: 1) I was able to closely 
match the “look” and syntax of the C reference implementation, 2) I applied the lessons learned from my 
Smalltalk implementation about masking off high-order overflow bits, and 3) as an interpreted language, 
Ruby’s coding and testing cycle is very quick and iterative.  After initial coding, I added a couple of 
common optimizations, such as pulling key indexing out of the loop, to improve performance. 
 
For each implementation, I wrote test cases (typically with xUnit) to verify that encryption and decryption 
results were correct. 

3.2 Performance 
 
TEA employs a Feistel network [1] (a symmetric block cipher) that uses a combination of bit shifting, 
XOR, and add operations to create the necessary diffusion and confusion of data.  It does these operations 
on 32 bit words rather than single bytes, a very important optimization that the authors note avoids 
“wasting the power of a computer.”  It uses a 128 bit (4 word) key, mixing in its individual word 
components in an effective key schedule.  The original implementation operates on 64 bits (two words) of 
data at a time, although variants (such as Block TEA) allow arbitrary-sized blocks. 
 
To measure performance, I wrote test drivers to run each of the basic encryption and decryption functions 
in all four language implementations against varying data.  I used simple calls to get the current 
millisecond clock value and subtracted the stop time from the start time to calculate elapsed milliseconds.  
I deliberately did not measure the time to move byte data in and out of words (blocks).  To get accurate 
and precise measurements against such a fast algorithm (and a PC clock that has such a large millisecond 
granularity), I measured multiple passes of each function (10,000 to 1,000,000) and divided where 
necessary to “normalize” the results.  The results are reported in Table 1 below. 

3.3 Strength 
 
TEA has weathered years of cryptanalysis quite well.  A couple of minor weaknesses were found in the 
algorithm shortly after publication.  These were corrected by the authors in the form of TEA Extensions, 
often referred to as XTEA [7].  The corrections did not significantly alter the algorithm and maintained its 
performance and simplicity; for example, the modified XTEA algorithm can still be represented in only 
seven lines of C code for each of the encryption and decryption steps.  At the same time, the authors 
published a modified variable-block algorithm (Block TEA), often called XXTEA.   
 
I found that a very effective means of learning TEA’s cryptographic strengths was to write test drivers 
and experiment with it.  I began by formatting TEA encrypted outputs in binary to watch the confusion 
and diffusion patterns with different combinations of keys, data, and iteration counts (rounds).  Indeed, 
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the key and data bits “travel quickly” and seemingly randomly across the encrypted results.  The “delta” 
constant is effective in “hiding” weak keys; for example, using all zeros for both key and data still yields 
well dispersed bits even with very few rounds. 
 
Given that my Java implementations performed well and were easy to work with, I wrote test drivers 
around them to do “brute force” (exhaustive search) “attacks” to attempt to find three types of 
weaknesses: 
 

• Hash collisions.  TEA was not designed to be a hash algorithm, and its potential for hash 
collisions has been documented.  But, since TEA has been repeatedly misused as a hash (for 
example, in Microsoft’s Xbox and ReiserFS), it’s useful to understand the likelihood of hash 
collisions.  Doing “brute force” searches for collisions is quite simple: for a given key, try 
different “plaintext” data and store each encrypted result (along with the input data) in a map for 
lookup.  If two plaintexts produce the same encrypted text, a collision has occurred. 

• Related keys.  A potential related key weakness has been documented for the original TEA 
implementation [2], and partly addressed in the modified (XTEA) version.  While much has been 
written and misunderstood about the severity of this weakness, the result is that the effective key 
length is decreased from 128 bits to 126 bits (each key having three other related keys), leaving 
TEA still quite strong, and with over double the effective key length of DES.  With minor 
adjustments to my hash collision test driver (this time, keep the data constant but permute the 
key), I was able to easily search for and find related keys. 

• Key cracking.  A brute force key search of the keyspace was easy to code: simply try candidate 
keys in sequence until finding one that produces a known plaintext-ciphertext pair.  This could 
take as long as 2128 iterations to find, but the actual runtime is smaller, for two reasons: 1) with 
luck, the matching key will be found much sooner than exhausting all combinations, and that will, 
of course, be “the last place you look,” and 2) as described above, related keys reduce the search 
space to O(2126).  From performance measurements, I calculated that a full exhaustive search on 
my computer alone with my Java implementation would require over 800 trillion eons: well past 
my report deadline.  Of course with faster implementations, more and better hardware, weak key 
choice, and luck, a match could be found significantly sooner.  I did crack one key in my test 
driver. 

 
See section 4.3 below for a summary of results from my cryptanalysis experiments. 

4. RESULTS 
 

The following sections summarize the results of my measurements and experiments. 

4.1 Simplicity  
 
Table 1 below reports the lines of code counts for just the core algorithms in each language.  Figure 4 
through Figure 6 in the appendix show the core of each of the Java, Smalltalk, and Ruby 
implementations.   
 
As indicated by the very low line of code counts, the algorithm is indeed simple to implement in these 
varied languages, particularly when deliberately matching the published reference implementation as 
closely as possible.  No single “port” took more than one hour to complete, including the time to write 
test drivers and xUnit test cases. 
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Language LOC 

(encrypt) 
LOC 

(decrypt) 
Encrypt time 
(1,000,000, 
millisecs) 

Decrypt time 
(1,000,000, 
millisecs) 

C 7 7 391 390 
Java 7 7 313 266 
Ruby 12 13 1004 1034 
Smalltalk 12 12 120,300 120,800 

Table 1 - TEA Implementation Comparison 

 
After completing my implementations and measurements, I researched and reviewed a few other 
implementations available on the internet and tested a few of them.  This raised concerns about the broad 
availability of some incorrect (erroneous) implementations. 
 
For example, Saurav Chatterjee of Jadavpur University published a Java TEA implementation that 
confused me.  Its rounds used Math.pow() to exponentiate results.  Obviously, this did not give encrypted 
results that matched my TEA and XTEA outputs, and it ran significantly slower than all other TEA and 
XTEA implementations.  After studying the implementation, it became clear how the author erred: he 
read the C XOR operator (caret, ^) as exponentiation, and transliterated it to Java as such.  One would 
expect the scope of this incorrect implementation to be limited, but it is included on several web pages, 
and is linked to by Wikipedia (and “if it’s on Wikipedia, it must be true”).  “Encryptor beware,” indeed.  
Further, I found a published Smalltalk XTEA implementation that was equally confusing and also 
incorrect; for example, it omitted the step of XOR’ing in the sum.  It was fast, but had some unique 
properties such as sometimes giving back the plaintext as the ciphertext when a zero key is used.  
 
These broadly-available incorrect implementations point to the need for published test suites 
(plaintext/ciphertext pairs for given keys) to verify encrypted results.  I created my own test data and 
results from the C implementation, and found this very helpful for verifying and debugging the other 
implementations as I wrote them (Figure 7 of the Appendix shows one of these).  Such certification test 
suites could help ensure that incorrect implementations do not survive and make their way into production 
software. 

4.2 Performance 
 
Table 1 above includes the run times for one million runs in each of the different implementations.  These 
times are for the (original) TEA implementations with 32 iterations; XTEA times (in C, Smalltalk, and 
Java) were similar.  All tests were run on a Dell Latitude D620 laptop with an Intel Core2 Duo running at 
2.0 GHz with Windows XP.  The particular tools and compilers used were GCC C 3.4.4, Sun Java 1.6.0, 
VisualAge Smalltalk 7.5.1, and Ruby 1.8.6.   
  
I ran ten passes of each and reported the median times.  I varied the inputs (data and keys) but found that 
this had no direct impact on the run time.  TEA’s linear performance is a strength, since timing attacks 
can be effective (for example, to reduce the search key space) against non-linear algorithms. 
 
The actual times themselves are not as significant as the relative comparisons.  I was surprised to find that 
the Java run times were so fast and that the Smalltalk performance was so poor.  This likely reflects more 
on the quality of the virtual machines (and their code caches) rather than an intrinsic problem in the 
language, although low-level (bitwise) operations in interpreted languages rarely perform as well as 
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compiled code or assembly code.  Ruby and Smalltalk users who must encrypt large amounts of data may 
be better served by implementing the algorithm in C or assembly (in a DLL) and calling out to it. 
 
I was interested in how TEA performance compared to 56-bit DES.  Since DES is readily available in 
Java (javax.crypto.Cipher.getInstance("DES")), I wrote a test driver there to measure and compare.  I 
found that DES was over 18 times slower for encryption (less for decryption) than TEA.  This is not a 
scientific comparison, since the Java DES implementation includes additional overhead for validation, 
loading, etc.  A PC Magazine study showed TEA (128 bit, 32 iterations) to be over 60% faster than 56-bit 
DES, and about 4 times faster than 168-bit 3DES. 
 
The Block TEA and XXTEA variants are recommend for encrypting large amounts of data, but I did not 
implement or measure those algorithms. 

4.3 Strength 
 
In a practical sense, modified TEA (XTEA) with proper keys and adequate rounds is quite strong as an 
encryption algorithm.  In an academic sense1 [3], as noted above, unmodified TEA has a published related 
key weakness [2] that reduces the effective key length from 2128 bits to 2126 bits and could result in a 
partial attack with 234 chosen plaintexts.  234 uncompressed plaintexts would 128 gigabytes of storage, but 
could be encrypted in just over one hour (it’s not known how long the differential attack would take to 
run).  Unfortunately, this often gets misrepresented that TEA is inherently weak and should not be used.   
 
In practice, misinformation about encryption algorithms can be more dangerous than academic 
weaknesses in the design.  Section 4.1 describes two incorrect TEA implementations that are broadly 
available on the internet, and at least one of these implementations is significantly weaker than the correct 
implementation.  As another example, the Microsoft Xbox misuses TEA as a hash function.  The security 
risk of TEA’s related key weaknesses in this context has been overstated.[5]  The greater risk for the 
Xbox is that hashing with any private key algorithm requires storing a key, and the key might be detected, 
as was quickly done with the Xbox’s RC4 key. Choosing a true hash algorithm would have avoided this 
risk.  These examples underscore the importance of truly understanding an algorithm in order to correctly 
apply it. 
 
As explained above, I wrote and ran simple programs to do very basic cryptanalysis of TEA and XTEA 
results.  This was more an educational exercise than formal research or careful analysis.  However, this 
led to a few items to note: 
 

• I did not find hash collisions or related keys with the full 32-iteration TEA or with XTEA.  
The single biggest barrier was not processing time, rather storage.  Finding collisions or 
related keys required storing and searching increasingly more encryption results until I 
exhausted available physical memory.  Allowing paging to occur (and writing and searching 
results to/from disk) significantly slowed the algorithm. 

• When I reduced the algorithm from 32 to 16 iterations, it was not difficult to find related 
keys.  A simple variant of my collision searching program (see Figure 8 in the Appendix) 
could typically find dozens of related keys (for particular data values) in under a minute. 

                                                                 
1 As Bruce Schneier explains, “in academic cryptography, the rules are relaxed considerably.  Breaking a cipher 
simply means finding a weakness… that can be exploited with a complexity less than brute-force.  Never mind that 
brute-force might require 2128 encryptions; an attack requiring 2110 encryptions would be considered a break.” 
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• Related keys and hash collisions were not confined to reported bit 16 and 32 permutations 
[4], although bit 30 [2] did factor in many of them.  I would like to see further details on such 
patterns or, better still, see published algorithms that demonstrate these reported problems. 

• Reports of related key and collision discoveries are often overstated; in fact, all such 
TEA/XTEA reports I found were against weakened (reduced round) implementations, such as 
this one: http://osdir.com/ml/file-systems.ext2.devel/2002-09/msg00011.html.  As stated 
above, it’s quite easy to find related keys with a reduced round TEA algorithm, but the 
practical significance of this is unclear, apart from leading to “fear, uncertainty, and doubt.” 

• My exhaustive key search program was simple and purely academic, but it did find one key.  
I wrote the program to generate a random number key, encrypt a known plaintext against that 
key, forget the key, and the start a key search from zero to re-encrypt the plaintext and look 
for a match to the ciphertext.  I wrote the program to stop after 1,000,000,000 iterations 
(about 400 seconds), so it was far from exhaustive.  However, in one pass it found a hit 
simply because the random key selected was low enough.  This was not at all surprising, but 
it was a simple reminder of the importance of good key selection.  Humans tend to select low 
and guessable numbers for keys, and such weak keys can be easily cracked. 

 

5. CONCLUSIONS AND RECOMMENDATIONS 
 

The simple conclusions (and answers to my opening questions) are: yes, TEA/XTEA is easy to 
implement, fast, efficient, and cryptographically strong.  When implemented and used correctly, TEA can 
be an excellent choice, particularly for encrypting and decrypting small, short-lived data in resource-
constrained devices.  I have personally seen simple XOR algorithms used for “encryption” in cases where 
the programmer “doesn’t have time, resources, or need for elaborate encryption algorithms.”  TEA would 
certainly be a better alternative. 
 
Based on my research, I offer the following recommendations for using TEA and other encryption 
algorithms: 
 

• Use XTEA whenever memory and processing requirements are limited, or when you want basic 
fast encryption without requiring pre-requisite code that may be licensed or patented, or carry 
export restrictions.  It should not be used for extremely sensitive or long-lived data. 

• Choose algorithms carefully.  Understand the purpose and benefits of a particular algorithm 
before choosing it.  TEA/XTEA is a private key encryption algorithm; do not repeat Microsoft’s 
mistake of using it as a hash function.  Many security weaknesses have come from the simple fact 
that an otherwise good algorithm was used for the wrong purpose. 

• Choose keys carefully and protect them.  TEA/XTEA is a private key algorithm, and its key must 
be protected.  Do not repeat Microsoft’s mistake of letting a critical private key be easily 
detected. 

• Seek to understand the true significance of “weakness” claims.   A “weakness” may have no real 
practical impact other than to spread “fear, uncertainty, and doubt.”  Cryptanalysis algorithms 
should be published and independently verified.   

• Encryption authors should publish test suites to verify implementations, in addition to complete 
reference implementations.   

• Test/verify an encryption algorithm against known expected results before putting it to use. 
• Use Block Tea/XXTEA for large amounts of data.  Add careful block chaining when encrypting 

multiple blocks. 
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7. APPENDICES 
 
Figure 2 gives the TEA decryption routine as published by Needham and Wheeler.  As you can see, it is 
similar to (the reverse of) the encryption routine shown in Figure 1 above. 
 

 
 
 

Figure 2 –TEA Decryption Routine in C 

 
Figure 3 gives the modified TEA (“XTEA”) algorithm as published by Needham and Wheeler. 
 

 
 
 
 

Figure 3 – Modified TEA (XTEA) Algorithm in C 

 

tean( long * v, long * k, long N) { 

 unsigned long y=v[0], z=v[1], DELTA=0x9e3779b9 ; 

 if (N>0) { 

  /* coding */ 

  unsigned long limit=DELTA*N, sum=0 ; 

  while (sum!=limit) 

   y+= (z<<4 ^ z>>5) + z ^ sum + k[sum&3], 

   sum+=DELTA, 

   z+= (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 &3] ; 

  } 

 else { 

  /* decoding */ 

  unsigned long sum=DELTA*(-N) ; 

  while (sum) 

   z-= (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 &3], 

   sum-=DELTA, 

   y-= (z<<4 ^ z>>5) + z ^ sum + k[sum&3] ; 

 } 

 v[0]=y, v[1]=z ; 

 return ; } 

void decode(long* v,long* k) { 

 unsigned long n=32, sum, y=v[0], z=v[1], 

   delta=0x9e3779b9 ; 

   sum=delta<<5 ; 

 

 while (n-->0) {  /* start cycle */ 

  z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; 

  y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ; 

  sum-=delta ;  

 } /* end cycle */ 

 v[0]=y ; v[1]=z ; } 
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Figure 4 through Figure 6 below show the “core” encrypt and decrypt code I wrote in Java, Smalltalk, 
and Ruby.  
 

 
 
 
 

Figure 4 –TEA Algorithm in Java 

public class TinyEncryptor { 
 
 private static int delta = 0x9E3779B9; /* a key schedule constant */ 
 public void code(int[] v, int[] k) { 
  int y=v[0], z=v[1], sum=0, n=32; 
  int k0=k[0], k1=k[1], k2=k[2], k3=k[3];  /* cache key */ 
  while (n-- > 0) { 
   sum += delta; 
   y += ((z << 4) + k0) ^ (z + sum) ^ ((z >>> 5) + k1); 
   z += ((y << 4) + k2) ^ (y + sum) ^ ((y >>> 5) + k3); 
  } 
  v[0]=y; v[1]=z;  
 } 
 
 public void decode (int[] v, int[] k) { 
     int y=v[0], z=v[1], sum=0xC6EF3720, n=32;  /* set up */ 
     int k0=k[0], k1=k[1], k2=k[2], k3=k[3];   /* cache key */ 
      
  while (n-- > 0) { 
   z -= ((y << 4) + k2) ^ (y + sum) ^ ((y >>> 5) + k3); 
   y -= ((z << 4) + k0) ^ (z + sum) ^ ((z >>> 5) + k1);  
   sum -= delta; 
  } 
     v[0]=y; v[1]=z; 
 } 
} 
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Figure 5 –TEA Algorithm in Smalltalk 

 

teaEncrypt: data 
 | key y z delta sum | 

 key := self encryptionKey. 

 y := data at: 1. z := data at: 2. 

 delta := 16r9E3779B9. sum := 0. 

 

 32 timesRepeat: [  

  sum := (sum + delta). 

  y := y + ((((z bitShift: 4) + (key at: 1)) bitXor: (z + sum)) 
bitXor: ((z bitShift: -5) + (key at: 2))). 

  y := y bitAnd: 16rFFFFFFFF. 

  z := z + ((((y bitShift: 4) + (key at: 3)) bitXor: (y + sum)) 
bitXor: ((y bitShift: -5) + (key at: 4))). 

  z := z bitAnd: 16rFFFFFFFF. 

 ]. 

 ^Array with: y with: z 

 

teaDecrypt: data 
 | key y z delta sum | 

 key := self encryptionKey. 

 y := data at: 1. z := data at: 2. 

 delta := 16r9E3779B9. sum := 16rC6EF3720    

 

 32 timesRepeat: [  

   n := n - 1. 

  z := z - ((((y bitShift: 4) + (key at: 3)) bitXor: (y + sum)) 
bitXor: ((y bitShift: -5) + (key at: 4))). 

  z := z bitAnd: 16rFFFFFFFF.   

  y := y - ((((z bitShift: 4) + (key at: 1)) bitXor: (z + sum)) 
bitXor: ((z bitShift: -5) + (key at: 2))). 

  y := y bitAnd: 16rFFFFFFFF. 

  sum := (sum - delta). 

 ]. 

 ^Array with: y with: z 
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Figure 6 –TEA Algorithm in Ruby 
 

class TEA 
  DELTA = 0x9e3779b9 
   
  def self.tea_encrypt(v, k) 
    y=v[0]; z=v[1]; sum=0; 
    k0=k[0]; k1=k[1]; k2=k[2]; k3=k[3] 
  
    32.times do |i| 
      sum += DELTA 
      y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1) 
      y = y & 0xFFFFFFFF 
      z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3) 
      z = z & 0xFFFFFFFF        
    end 
 return [y,z] 
  end   
 
  def self.tea_decrypt(v, k) 
    y=v[0]; z=v[1] 
    k0=k[0]; k1=k[1]; k2=k[2]; k3=k[3] 
    sum = DELTA << 5 
  
    32.times do |i| 
 z -= ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3) 
 z = z & 0xFFFFFFFF   
 y -= ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1) 
 y = y & 0xFFFFFFFF           
 sum -= DELTA       
    end 
    return [y,z] 
  end     
end 
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Figure 7 –SUnit  for Verifying Encryption Results 
 

testEncrypts 

 "Run some basic encryptions and verify the results" 

 "self new testEncrypts" 

 

 self encryptionKey: (Array with: 0 with: 0 with: 0 with: 0). 

 self  

  assert: (self testEncrypt: (Array with: 0 with: 0) compare: (Array with: 
16r41EA3A0A with: 16r94BAA940)); 

  assert: (self testEncrypt: (Array with: 1 with: 1) compare: (Array with: 
16rE0050D07 with: 16r4FB50C13));  

  assert: (self testEncrypt: (Array with: 16r12345678 with: 16r9ABCDEF0) 
compare: (Array with: 16r7FE2E480 with: 16r4F66BD75)); 

  assert: (self testEncrypt: (Array with: 16rFFFFFFFF with: 16rFFFFFFFF) 
compare: (Array with: 16rF6F4BF6E with: 16r1335B5B8)). 

   

 Transcript cr. 

 self encryptionKey: (Array with: 16r12345678 with: 16r9ABCDEF0 with: 
16r12345678 with: 16r9ABCDEF0). 

 self  

  assert: (self testEncrypt: (Array with: 0 with: 0) compare: (Array with: 
16rBCDA8737 with: 16r1024D312)); 

  assert: (self testEncrypt: (Array with: 1 with: 1) compare: (Array with: 
16r8AC711A0 with: 16r75CFE57E));  

  assert: (self testEncrypt: (Array with: 16r12345678 with: 16r9ABCDEF0) 
compare: (Array with: 16r3ADDB70 with: 16r5EAEA194)); 

  assert: (self testEncrypt: (Array with: 16rFFFFFFFF with: 16rFFFFFFFF) 
compare: (Array with: 16rEEFBE7FB with: 16r70ED4B9D)). 
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Figure 8 –TEA Collision Searcher 
 
 

public class TEACollisionSearcher { 
  
 public static void main(String[] args) { 

  TinyEncryptor tea = new TinyEncryptor(); 

  int key[] = {0,0,0x12345678,0x9abcdef0}; 

  int data[] = {0x12345678,0x9abcdef0}; 

  HashMap<Integer, Integer[]> map = new HashMap<Integer, Integer[]>(); 

  for (int i=0; i<=1000000; i++) { 

   key[0] = i;  key[1] = i; 

   data[0]=0x12345678;  data[1]=0x9abcdef0; 

   tea.code(data, key); 

   Integer lookup = data[0]; 

   Integer[] match = map.get(lookup); 

   if (match != null && match[0] == data[1]) { 

    System.out.println("Collision - Key1[0,1]: " 

       + Integer.toHexString(key[0]) + " "  

       + Integer.toHexString(key[1]) + " " 

       + " Key2[0,1]: " 

       + Integer.toHexString(match[1]) + " " 

       + Integer.toHexString(match[2]) + 
":");  

   } 

   Integer[] put = {data[1], key[0], key[1]}; 

   map.put(lookup, put);   

  } 

 } 

} 


